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定理 1 (Ascoli–Arzelàの定理, 1次元 version).

I を R 上の有界閉区間, {fn}n∈N を I 上の実数値連続関数全体 C0(I;R) の点列とする. このとき
{fn}n∈N が一様有界かつ同程度連続ならば, {fn}n∈N は I 上一様収束する部分列を持つ.

Key Point : 可分性, Cantorの対角線論法

Proof. I ∩Qの全ての元からなる数列 {xn}n∈N は, I の稠密部分集合である (I の可分性).

{fn}n∈Nは一様有界なので,特に {fn(x1)}n∈Nは有界である.したがってBolzano-Weierstrassの定理よ
り, x1 での値が収束するような {fn}n∈N の部分列 {f1,n}n∈N がとれる. 同様に, ある部分列 {f2,n}n∈N ⊂
{f1,n}n∈N が存在して, {f2,n(x2)}n∈N は収束する. この操作を繰り返せば, {fk,n}n∈N ⊂ {fk−1,n}n∈N で,

{fk,n(xk)}n∈N が収束するような部分列がとれる. このとき対角線上に並ぶ列 {fn,n}n∈N は, 任意の i ∈ N
について {fn,n(xi)}n∈N が収束するような関数列である (対角線論法). 実際, {fn,n}n≥i ⊂ {fi,n}n∈N で
あり, かつ {fi,n(xi)}n∈N は収束する.

f1,1 f1,2 f1,3 · · · s.t. {f1,n(x1)} は収束する

f2,1 f2,2 f2,3 · · · s.t. {f2,n(x2)} は収束する

f3,1 f3,2 f3,3 · · · s.t. {f3,n(x3)}は収束する

...
...

...
. . . {fn,n}n∈N

以下 {fn,n}n∈N が || · ||I(一様ノルム) について Cauchy列であることを示す. ε > 0を任意にとる. この
とき

(1) ある δ > 0が存在して

∀n ∈ N ∀x, y ∈ I
(
|x− y| < δ → |fn,n(x)− fn,n(y)| <

ε

3

)
を満たす ({fn,n}n∈N の同程度連続性より).

(2) (1)の δ に対し, あるM ∈ Nが存在して

∀x ∈ I ∃i ∈ {1, 2, · · · ,M} |x− xi| < δ

を満たす (I の有界性 &{xn}n∈N の I における稠密性より).
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(3) (2)のM に対し

∀i ∈ {1, 2, · · · ,M} ∃Ni ∈ N ∀m,n ∈ N
(
m,n ≥ Ni → |fm,m(xi)− fn,n(xi)| <

ε

3

)
が成り立つ ({fn,n}n∈N のとり方から, 任意の i ∈ Nに対して {fn,n(xi)}n∈N は絶対値ノルム | · |に
ついて Cauchy列だから). したがって N := max1≤i≤M Ni とすれば

∀i ∈ {1, 2, · · · ,M} ∀m,n ∈ N
(
m,n ≥ N → |fm,m(xi)− fn,n(xi)| <

ε

3

)
が成り立つ.

ここで (1)-(3) の手順から, N はM にのみ依存し, M は δ, δは εにのみ依存することがわかる. すなわち
(3) の N は εにのみ依存する. したがって任意の m,n ≥ N,任意の x ∈ I について, (2) の |x − xi| < δ

を満たす xi をとれば

|fm,m(x)− fn,n(x)| ≤ |fm,m(x)− fm,m(xi)|+ |fm,m(xi)− fn,n(xi)|+ |fn,n(xi)− fn,n(x)|

<
ε

3
+

ε

3
+

ε

3
= ε

が成り立つ. ε > 0は任意だったので

∀ε > 0 ∃N ∈ N ∀m,n ∈ N ∀x ∈ I (m,n ≥ N → |fm,m(x)− fn,n(x)| < ε)

⇐⇒ ∀ε > 0 ∃N ∈ N ∀m,n ∈ N (m,n ≥ N → ||fm,m(x)− fn,n(x)||I < ε)

⇐⇒ {fn,n}n∈N は || · ||I について Cauchy列

がわかる. さて {fn,n}n∈N の一様有界性から

{fn,n}n∈N ⊂ C0
b (I) := {f ∈ C0(I) : ||f ||I < ∞}

であり, (C0
b (I), || · ||I)は Banach空間なので, {fn,n}n∈N は I 上一様収束する.

{fn}n∈N を I 上の複素数値連続関数全体 C0(I;C)の部分集合としても, 複素数の絶対値を考えることで, 1次
元 versionの Ascoli–Arzelàの定理が成り立つことは容易にわかる.

さて, 定義域を Rn 上の有界領域 (連結な開集合) としても同様に成立するのだが, 少し詳しく見てみよう.

有界領域 K ⊂ Rn に対し, K ∩Qn の元からなる点列は K の可算な稠密部分集合であり, 「Rn の任意の有界
数列は収束する部分列を持つ」というのが Bolzano-Weierstrassの定理の主張だから, Euclidノルムを考えれ
ば, 前半の対角線論法までは問題ない.

あとは構成した部分列が Cauchy列であることを示せばよいのだが, (2) は 1次元のときより多少複雑にな
る. 上の証明の (2) は, くだけた言い方をすれば, I の有界性から「有界区間 I を幅 δ で分割すると部屋は有限
個で足りる」こと, そして {xn}n∈N の稠密性から「どの部屋にも必ず {xn}n∈N の元がいる」ことがわかるの
で, 各部屋に一つずつ割り当てた {xn}n∈N の元のうち, 最も大きい添え字をM とすればよい, という流れで
あった.

K の稠密部分集合がとれることはすでに見たが, 1次元のときとパラレルな議論をするには, 「有界区間 I

を (εに依存して決まる) 幅 δ で分割すると部屋は有限個で足りる」ことに対応する, 「任意の δ > 0につい
て, K の有限 δ-ネットが存在する」ことが必要となる.
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R

I

幅 δ

R2

K

有限個の半径 δ の開円板

言い換えればK の全有界性が必要で, これは (ほとんど明かな) 次の補題からわかる.

補題 2.

Euclid空間 Rn における任意の部分集合K ⊂ Rn について

K は有界⇒ K は全有界

が成り立つ.

Proof. K を Rn の有界部分集合とすれば, ある点 a ∈ Rn とM > 0が存在して

K ⊂ B(a,M) := {x ∈ Rn : d(x,a) < M}

が成り立つ. この a,M について M ′ := d(a,0) + M とおくと B(a,M) ⊂ [−M ′,M ′]n なので,

[−M ′,M ′]n が全有界であることを示せばよい.

ε > 0を任意にとる. このときm ∈ Nを十分大きくとることで 1/m < ε/
√
nとできる. さて

A :=

{(
k1
m

,
k2
m

, · · · , kn
m

)
: −mM ′ ≤ k1, k2, · · · , kn ≤ mM ′

}
という, 各 [−M ′,M ′]n を幅 1/mで分割したときの格子点の集合を考えれば

[−M ′,M ′]n ⊂
⋃
α∈A

B(α, ε)

となる. 実際, 任意の x = (x1, x2, · · · , xn) ∈ [−M ′,M ′]n に対し y :=
(
k1

m , k2

m , · · · , kn

m

)
∈ Aが存在して

∀i ∈ {1, 2, · · · , n}
∣∣∣∣xi −

ki
m

∣∣∣∣ < 1

m

3



が成り立つので, このような y について

d(x,y) =

√√√√ n∑
i=1

(
xi −

ki
m

)2

<

√√√√ n∑
i=1

1

m2
=

√
n

m
< ε

となり, x ∈ B(y, ε)が従う.

このように Rn の有界領域K についても無事 (2) の議論ができて, 対角線論法で構成した部分列が Cauchy

列であることがわかる.

念のため証明の最後も復習すると, 完備性のために {fn,n}n∈N ⊂ C0
b (K)であることを使っていた. K ⊂ Rn

が有界閉集合 (Heine-Borelの被覆定理より K はコンパクト) のとき最大値の原理 (コンパクト集合上の連続
関数は最大値を持つ) より C0(K,C) = C0

b (K,C) が成り立つのだが, 前述の通り一様有界性さえあればその
ような議論は不要である.

!
以上の確認から, 定義域を Euclid空間で考える場合には有界性さえあれば十分で, 定理 1における
I が開集合であるという仮定, あるいはK が領域であるという仮定は減らせることがわかる.

ここまでの結果をまとめると次の様になる.

定理 3 (Ascoli–Arzelàの定理, Euclid空間 version).

K を Rn 上の有界集合, {fn}n∈N を K 上の複素数値連続関数全体 C0(K;C)の点列とする. このとき
{fn}n∈N が一様有界かつ同程度連続ならば, {fn}n∈N はK 上一様収束する部分列を持つ.

Cと R2 は同一視できるので, 定理 3は定義域を Cの有界領域としても成り立ち, この形は例えば Montel

の定理の証明で役立つ (開集合でなくてよいことは用無しである).

さらなる一般化によって定義域を任意の全有界距離空間としても上の定理は成り立つ. 全有界距離空間 X

上の複素数値連続関数全体を C0(K,C)とすると, (C0(K,C), || · ||I)は Banach空間となる (C の完備性から
示せるので, 定理 3でも問題にならなかった).

定理 4 (Ascoli–Arzelàの定理).

(X, d)を全有界距離空間, {fn}n∈N を X 上の複素数値連続関数全体 C0(X;C)の点列とする. このと
き {fn}n∈N が一様有界かつ同程度連続ならば, {fn}n∈N は X 上一様収束する部分列を持つ.

定理 3までの議論で得た教訓から, 次の補題があれば十分である.

補題 5.

全有界距離空間 (X, d)は可分である. すなわち X の可算部分集合で, X で稠密なものが存在する.
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Proof. X は全有界なので, 各 n ∈ Nに対して有限 1/n-ネット Sn =
{
B
(
xn,k,

1
n

)
: 1 ≤ k ≤ kn

}が存在
する. このとき

S := {xn,k : n ∈ N, 1 ≤ k ≤ kn}

とおけば, S は X の可算な稠密部分集合である. 実際, 有限集合 Sn の可算個の合併なので可算である. ま
た任意の x ∈ X, 任意の ε > 0に対し m ∈ Nを十分大きくとることで 1/n < εとできて, Sm は X の被
覆だから, ある xm,k ∈ Sm が存在して x ∈ B(xm,k,

1
n )となる. すなわち d(x, xxm,k

) < 1/n < εが成り立
つので, S は X で稠密である.

定理 3が定理 1として知られているように, 定理 4を “きれいな形”で主張し直したのが定理 6である.

定理 6 (Ascoli–Arzelàの定理).

(X, d)をコンパクト距離空間, {fn}n∈N を X 上の複素数値連続関数全体 C0(X;C)の点列とする. こ
のとき {fn}n∈N が一様有界かつ同程度連続ならば, {fn}n∈N は X 上一様収束する部分列を持つ.

Proof. X をコンパクト距離空間とすれば, X は全有界である.実際,任意の ε > 0について {B(x, ε) : x ∈
X}は X の開被覆だから有限部分被覆が存在し, それは X の有限 ε-ネットに他ならない.

上で使った「コンパクト距離空間は全有界である」は自明だが, 次の関係が有名である.

定理 7.

(X, d)を距離空間とすると, 以下は同値である.

(1) X はコンパクト
(2) X は点列コンパクト
(3) X は全有界かつ完備
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