

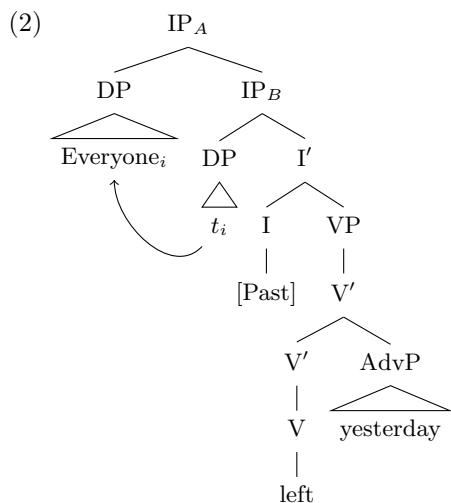
Poole(2011): Chapter7 Further Exercises

荒木 理求

23120086@ed.tmu.ac.jp

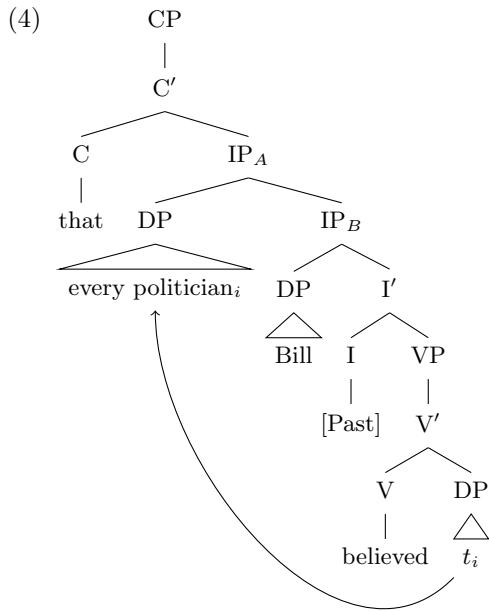
2025年12月23日

1 Exercise 1

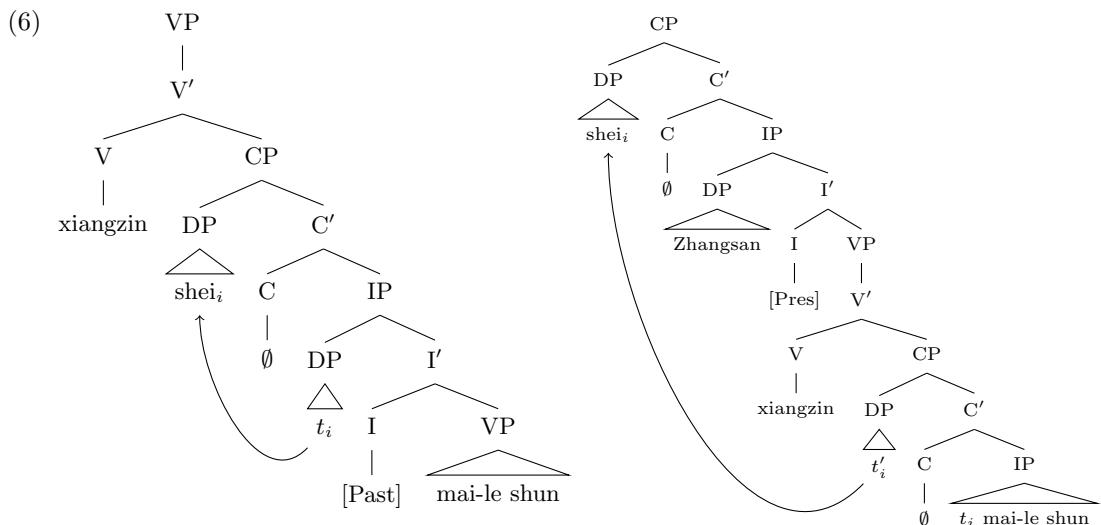


以下の文の LF 表示をかけ :

1. Everyone left yesterday.
2. John said that Bill believed some politician.
3. Zhangsan xiangzin [shei mai-le shu]?[Chinese]
Zhangsan believe who bought book
'Who does Zhangsan believe bought books?'


1.1

(1) S 構造 : $[_{CP} [_{IP} \text{Everyone left yesterday}]]$.
(2) LF 表示 : $[_{CP} [_{IPA} \text{Everyone}_i [_{IPB} t_i \text{ left yesterday}]]]$


1.2

(3) S 構造 : $[\text{CP} [\text{IP} \text{ John said } [\text{CP} \text{ that } [\text{IP} \text{ Bill believed some politician}_i]]]]$.
 (4) LF 表示 : $[\text{CP} [\text{IP} \text{ John said } [\text{CP} \text{ that } [\text{IP}_A \text{ some politician}_i [\text{IP}_B \text{ Bill believed } t_i]]]]]$.

1.3

(5) S 構造 : $[\text{CP} [\text{IP} \text{ Zhangsan xiangzin } [\text{CP} [\text{IP} \text{ shei}_i \text{ mai-le shu}]]]]$?
 (6) LF 表示 : $[\text{CP} \text{ shei}_i [\text{IP} \text{ Zhangsan xiangzin } [\text{CP} t'_i [\text{IP} t_i \text{ mai-le shu}]]]]$

2 Exercise 2

不定冠詞の $a(n)$ は *some* と同様に, 存在量化詞 (existential quantifier) として機能する. 作用域の曖昧性 (scope ambiguity) の議論を用いて, これを示せ^a.

^a pp.207-11 とあるのは誤植で, 正しくは pp.204-206 Scope ambiguity and QR を参照せよ

まず次の (1) を考える :

- (1) Every student likes a teacher.
- (2) S 構造 : $[\text{CP} [\text{IP} \text{ every student } [\text{VP} \text{ likes a teacher}]]]$.

この解釈は以下の 2 通りである :

- (3a) $\forall x \in \{ \text{生徒その } 1, \text{ 生徒その } 2, \dots \} \exists y \in \{ \text{教員その } 1, \text{ 教員その } 2, \dots \} (x \text{ は } y \text{ が好き})$
- (4a) $\exists y \in \{ \text{教員その } 1, \text{ 教員その } 2, \dots \} \forall x \in \{ \text{生徒その } 1, \text{ 生徒その } 2, \dots \} (x \text{ は } y \text{ が好き})$

(3a) は「生徒全員に好きな教員が存在する」, (4a) は「生徒全員に好かれている教員が存在する」ことに他ならず, LF はそれぞれ次の様になる :

- (3b) $[\text{CP} [\text{IP}_A \text{ every student}_i [\text{IP}_B \text{ a teacher}_j [\text{IP}_C t_i [\text{VP} \text{ likes } t_j]]]]]$ (a teacher を先に繰り上げた場合)
- (4b) $[\text{CP} [\text{IP}_A \text{ a teacher}_j [\text{IP}_B \text{ every student}_i [\text{IP}_C t_i [\text{VP} \text{ likes } t_j]]]]]$ (every student を先に繰り上げた場合)

また $a(n)$ を主語位置に置いた,

- (5) A student likes every teacher.

においても 2 通りの解釈が可能で, QR の順番によって説明される. したがって $a(n)$ は存在量化詞と言える.

3 Exercise 3

以下の文を考えよ：

1. Some student whispered that Bill read every book.
2. Some student believed that Bill read every book.

some と *every* の相対的な作用域としてあり得るものは何か。また、このデータはこれまでの議論に矛盾するか。

1 の解釈として、

(1a) $\exists x \in \{ \text{生徒その } 1, \text{ 生徒その } 2, \dots \} \forall y \in \{ \text{本その } 1, \text{ 本その } 2, \dots \} (x \text{ は Bill が } y \text{ を読んだと噂した})$

があり得る。これは、「ある生徒が Bill は全ての本を読んだと噂した」ことを意味し、LF は次の様：

(1b) $[\text{IPA some student}_i [\text{IPA } t_i \text{ whispered that } [\text{IPB every book}_j [\text{IPB Bill read } t_j]]]]$.

一方、2 の解釈として、

(2a) $\exists x \in \{ \text{生徒その } 1, \text{ 生徒その } 2, \dots \} \forall y \in \{ \text{本その } 1, \text{ 本その } 2, \dots \} (x \text{ は Bill が } y \text{ を読んだと信じていた})$

(3a) $\forall y \in \{ \text{本その } 1, \text{ 本その } 2, \dots \} \exists x \in \{ \text{生徒その } 1, \text{ 生徒その } 2, \dots \} (x \text{ は Bill が } y \text{ を読んだと信じていた})$

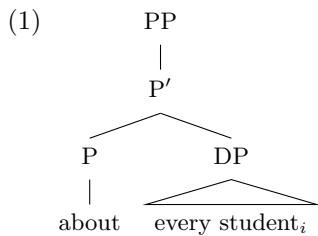
があり得る。(2a) は「ある生徒が Bill は全ての本を読んだと信じていた」、(3a) は「任意の本について、Bill がその本を読んだと信じていた生徒が存在する」ことに他ならず、LF はそれぞれ次の様になる：

(2b) $[\text{IPA some student}_i [\text{IPA } t_i \text{ believed that } [\text{IPB every book}_j [\text{IPB Bill read } t_j]]]]$.

(3b) $[\text{IPA every book}_j [\text{IPB some student}_i [\text{IPC } t_i \text{ believed that Bill read } t_j]]]$.

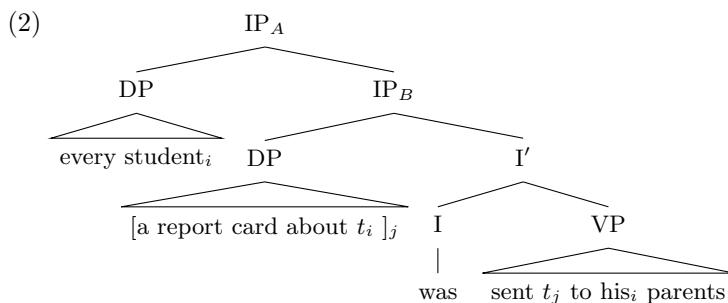
しかし、§7.2 Quantifier raising and Subjacency において、数量詞は最も近い IP に付加 (adjoin) し、それ以上遠くに移動できないことを見た。したがって、ここまで扱ってきた規則では、(3b) の派生を得ることはできず、矛盾が生じる。

4 Exercise 4



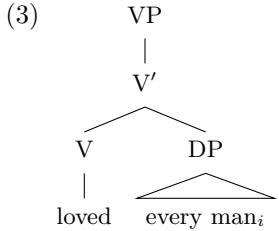
代名詞が束縛変項 (bound variable) として機能するためには、演算子 (operator) によって c 統御されなければならないという仮定のもとで、以下の文は QR (quantifier raising) の存在の証左となる。これを説明せよ。

1. A report card about every student_i was sent to his_i parents.
2. *The woman who loved every man_i decided to leave him_i.

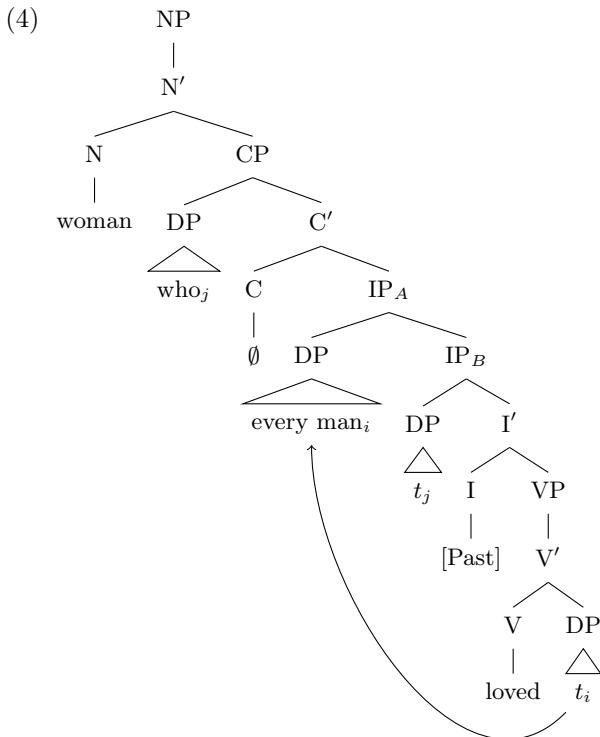

4.1

(1) S 構造 : $[\text{CP} [\text{IP} [\text{DP} \text{ a report card about every student}_i]_j \text{ was sent } t_j \text{ to his}_i \text{ parents}]]$.

1 では、his_i が束縛変項として機能しているので、演算子である every student_i に c 統御される必要がある。しかし、S 構造で DP-every student_i が c 統御しているのは P-about のみである。そこで QR の存在を認めれば、LF は次の様になる：


(2) LF 表示 : $[\text{CP} [\text{IP}_A \text{ every student}_i [\text{IP}_B [\text{DP} \text{ a report card about } t_i]_j \text{ was sent } t_j \text{ to his}_i \text{ parents}]]]$.

(2) ではたしかに every student_i が his_i を c 統御しており、問題の仮定を満たす。


4.2

(3) S 構造 : $*[_{CP} [_{IP} [_{DP} \text{The woman} [_{CP} \text{who}_j [_{IP} t_j \text{ loved every man}_i]]] \text{ decided to leave him}_i]]$.

2 も every man_i と him_i が同一指標をもち、束縛変項の解釈を仕向けているが、S 構造において DP-every man_i が c 統御するのは V-loved のみである。このとき QR の存在を認めれば、LF は次の様になる：

(4) LF 表示 : $[_{CP} [_{IP} \text{The} [_{NP} \text{woman} [_{CP} \text{who}_j [_{IP_A} \text{every man}_i [_{IP_B} t_j \text{ loved } t_i]]] \text{ decided to leave him}_i]]$.

(4) に見られるように、every man_i は最も近い IP に付加するので、LF においても明らかに him_i を c 統御しない。したがって、非文であることが正しく予測される。以上の議論から、QR の存在の妥当性が言えた。

5 Exercise 5

§7.3において、虚辞 *there* は LF で連合要素 (associate) に置き換えられると仮定した。そのため、1 は LF では 2 のように表示される：

1. There is a man in the room.
2. A man_i is t_i in the room.

次の文はこの仮定に矛盾する。どのような問題があるか説明せよ。

3. There weren't many books on the shelf.
4. Many books weren't on the shelf.

3 は「本棚にはあまり本がなかった」、4 は「多くの本が本棚になかった」ことを意味する。すなわち、3 は本の全体量が少ない、例えば 3 冊しかないような状況を指すが、4 は極端な例を挙げれば、本が 10^{10} 冊ある一方で、探している本は 1 冊しかないような状況を指す。さて、虚辞は LF で連合要素に置き換えられると仮定したので、3 の文の LF は次の様である：

LF 表示： many books_i weren't t_i on the shelf.

これは 4 に他ならない。このときうえの議論から、3 は S 構造と LF で意味が変わってしまうことになる。

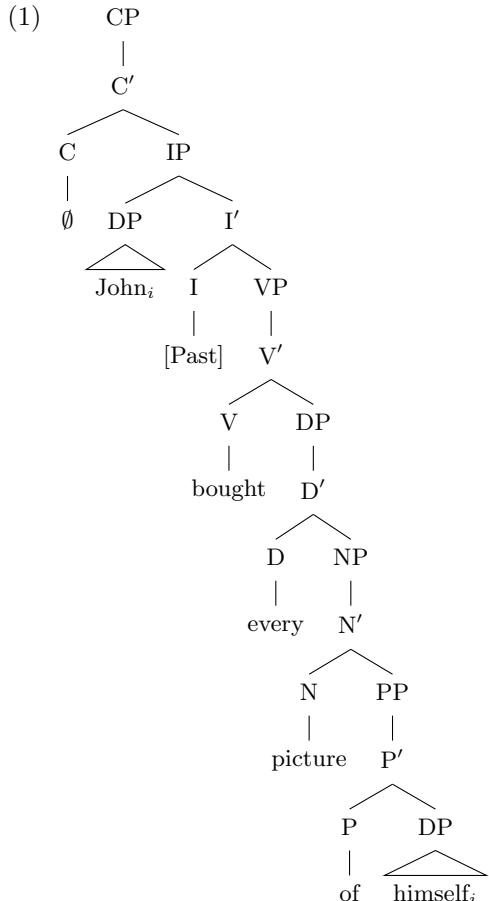
6 Exercise 6

§7.3 では、主語と定型動詞の一致 (subject-verb agreement) が、D 構造でなく LF で満たされなければならないことを見た。これは 1 のような文を説明するためであった：

1. There were six people in the office.

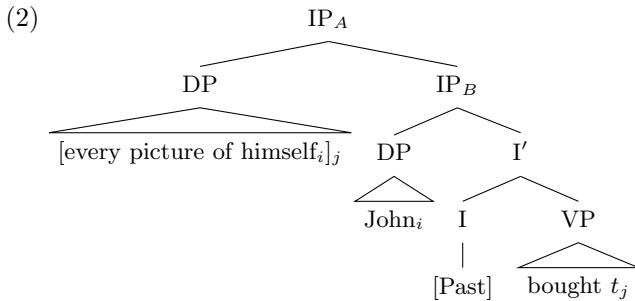
このように、束縛原理 (Binding Theory) が満たされるべき表示レベルも LF に修正する必要はあるか。以下のような例を用いて説明せよ。

2. John_i bought every picture of himself_i
3. *He_i liked every picture that John_i took.


ここまで議論で得た結論は、次の文に説明を与えるか。

4. Which claim that John_i made did he_i deny?

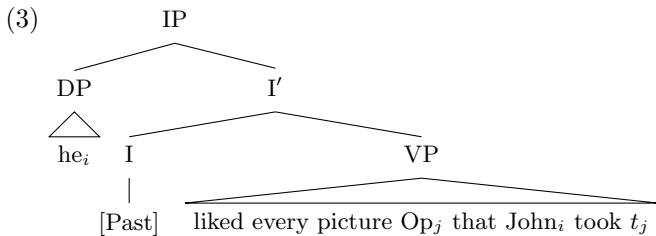
6.2


$John_i$ は指示表現 (R-expression) なので束縛原理 (binding principle) (C) が適用され, A 自由 (A-free) でなければならない. 他方, $himself_i$ は照応形 (anaphor) なので, 束縛原理 (A) が適用され, その統率範疇 (governing category) の内部で, A 位置の要素に束縛 (bind) されなければならない.

(1) S 構造 : $[_{CP} [_{IP} John_i \text{ bought } [_{DP} \text{ every picture of } himself_i]]]$.

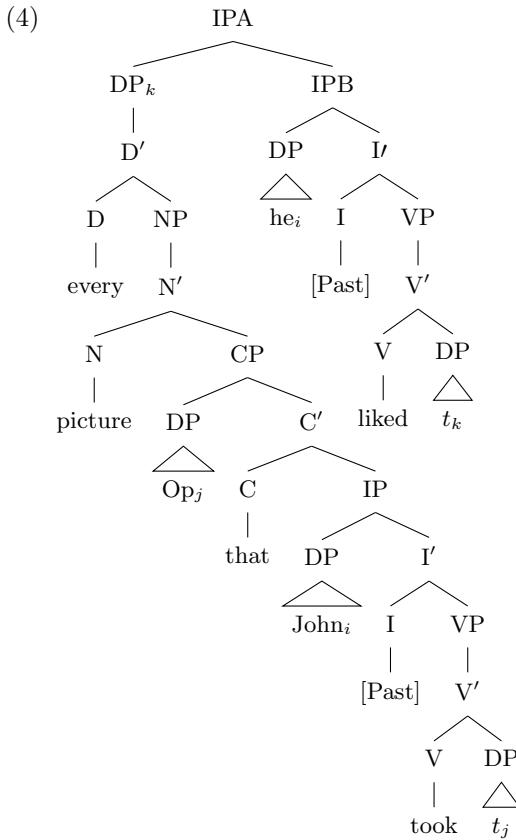
S 構造においては, もちろん束縛原理を満たす. 実際, $John_i$ の先行詞が存在せず, $himself_i$ の統率範疇は主節の IP であり ($:DP$ - $himself_i$, 統率子 (governor) P -of, 接近可能な拡大主語 (accessible SUBJECT) DP - $John_i$ を含む最小の XP である), その中に $John_i$ に束縛される.

(2) LF 表示 : $[\text{CP} [\text{IP}_A [\text{DP} \text{every picture of himself}_i]_j [\text{IP}_B \text{John}_i \text{ bought } t_j]]]$.



しかし LFにおいては、明らかに himself_i が John_i に c 統御されないので、束縛原理 (C) に違反する。

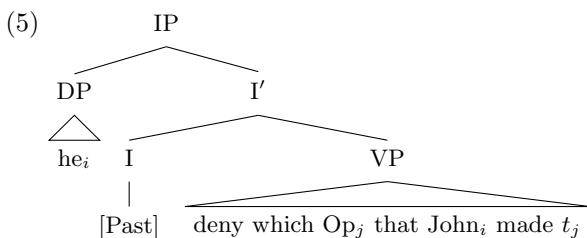
6.3


he_i は代名詞なので束縛原理 (B) が適用され、その統率範疇の内部で A 自由でなければならない。 John_i は指示表現なので束縛原理 (C) が適用され、A 自由でなければならない。

(3) S 構造 : $*[\text{CP} [\text{IP} \text{he}_i \text{ liked } [\text{DP} \text{every picture } [\text{CP} \text{Op}_j \text{ that } \text{John}_i \text{ took } t_j]]]]$.

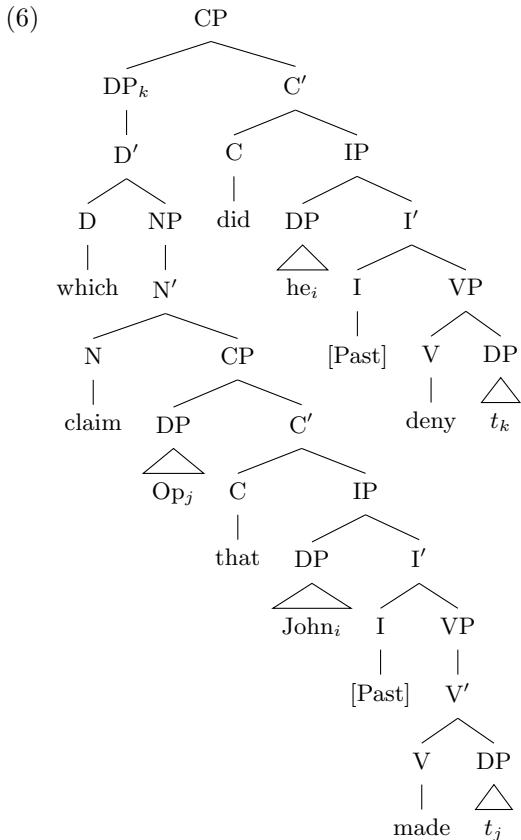
S 構造において束縛原理に違反する。実際、A 位置にある he_i が John_i を束縛し、 John_i は A 自由でない。

(4) LF 表示 : [tiny CP [_{IPA} [_{DP} every picture Op_j that John_i took t_j]_k [_{IPB} he_i liked t_k]]].


LFにおいて束縛原理を満たす。実際, he_i, John_i は互いに c 統御せず, すなわちともに A 自由である。

以上の議論から, LF で束縛原理を満たせばよいとすれば, 2 を非文予測し, 3 を正文予測してしまう。したがって, これまでと同様, S 構造で束縛原理を確かめればよい。

6.4


he_i は代名詞なので束縛原理 (B) が適用され, その統率範疇の内部で A 自由でなければならない。John_i は指示表現なので束縛原理 (C) が適用され, A 自由でなければならない。

(5) D 構造 : *[_{CP} [_{IP} he_i deny [_{DP} which claim [_{CP} Op_j that John_i made t_j]]]]].

D 構造において束縛原理に違反する。実際, A 位置にある he_i が John_i を束縛し, John_i は A 自由でない。

(6) S 構造 : $[_{\text{CP}} [_{\text{DP}} \text{Which} \text{ claim } \text{Op}_j \text{ that } \text{John}_i \text{ made } t_j]_k \text{ did } [_{\text{IP}} \text{he}_i \text{ deny } t_k]]$

S 構造において束縛原理を満たす。実際, he_i , John_i は互いに c 統御せず, すなわちともに A 自由である。ここに (3) と (5), (4) と (6) の対応を見ることができる。よって, S 構造で束縛原理を満たすべきという結論が従う。