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本日 12月 22日の目標は, 複素解析の基本事項の簡単な復習の後, 解析学で重要度の高い Ascoli—Arzelà

の定理とMontelの定理を示すことである.

1 はじめに
複素解析といえば, 学部で習う最も美しい定理として評判の Cauchyの積分定理や, そこから直ちに導かれ,

実積分への応用がある留数定理を思い浮かべる人が多い (らしい). このことは, 留数定理を目標とする講義動
画が, YouTubeにおいて大変充実していることからも窺える.

しかしながら, もう少し進んで Riemann の写像定理まで扱う授業が標準的であることも事実だ. せっかく
留数定理まで学んだのなら, Riemannの写像定理までやってしまわないのは大変惜しい.

そこで留数定理までは多くの優れた教科書や動画に任せ, 短時間で Riemannの写像定理までたどり着こう,

というのが本稿の主旨である. いざ行かん.　

Riemannの写像定理.

D ⊊ C, D は単連結領域とする. a ∈ D を任意にとれば, D から単位開円板 B への双正則写像
f : D → B で, 次の条件a を満たすものが一意的に存在する :

f(a) = 0 かつ f ′(a) > 0.

a 正規化条件と呼ばれる.

2 前提
予告通り, Cauchyの積分定理は既知とする (証明はなかなか大変である).

定理 1 (Cauchyの積分定理, 簡易版).

D を Cの領域a, f : D → Cは D 上で正則な関数b とする. D 内の単純閉曲線c γ について, その内部
でも f が正則ならば ∫

γ

f(z) dz = 0

が成り立つ.

a 連結な開集合のこと.
b 各点で複素微分可能な関数のことで, 解析関数とも呼ばれる. 後に述べる Cauchyの積分公式から無限級数展開可能なこ
とがわかり, 無限回微分可能なことが従うのであった.

c 自己交叉のないループのこと. Jordan曲線や単一閉曲線とも呼ばれる.
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このことから留数定理の中核をなす次の補題が得られるのであった.

補題 2 (積分経路の変形).

D を Cの領域, f : D → Cは D 上で正則な関数とする. D 上の単純閉曲線 γ について, γ を D 内で
連続的に変形させると γ′ になるとき ∫

γ

f(z) dz =

∫
γ′
f(z) dz

が成り立つ.

3 復習
定理 3 (Cauchyの積分公式).

D を Cの領域, f : D → Cは D 上で正則な関数とする. 任意の ζ ∈ D について z を内部に含む D 内
の単純閉曲線 γ を考え, その内部でも f が正則ならば

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

が成り立つ.

この定理には二通りの証明を与えておく.

Proof. (その 1)

両辺に 2πiをかけた形を示す. I :=
∫
γ
{f(ζ)− f(z)}/(ζ − z) dζ とおけば∫

γ

f(ζ)

ζ − z
dζ =

∫
γ

f(ζ)− f(z)

ζ − z
dζ +

∫
γ

f(z)

ζ − z
dζ

= I + 2πif(z)

なので, I = 0を示せばよい.

ε > 0を任意にとる. f は D 上正則より連続なので, r > 0を十分小さくとれば ∂B(z, r)上の任意の ζ に
対し

|f(ζ)− f(z)| < ε

とできる. {f(ζ)− f(z)} / (ζ − z) の正則性a と補題より, 積分経路を γ から ∂B(z, r) に取り替えてよ
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かったので

|I| =

∣∣∣∣∣
∫
∂B(z,r)

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣∣
=

∣∣∣∣∫ 2π

0

f(ζ)− f(z)

r(cosθ + isinθ)
· r(−sinθ + icosθ) dθ

∣∣∣∣
≤

∫ 2π

0

∣∣∣∣ f(ζ)− f(z)

r(cosθ + isinθ)
· r(−sinθ + icosθ)

∣∣∣∣ dθ

=

∫ 2π

0

|f(ζ)− f(z)| dζ

< 2πε

が成り立ち, ε > 0を任意にとったことから I = 0が従う.

a γ を境界とする有界領域から B(z, r)を引いて閉包を取った集合上での正則性を指す.

この証明は直接的でわかりやすいが, その分汎用性は低い. 一方, 次の平均値の定理は証明がやや面倒なもの
の, かなり有用な最大値原理を示すのにも役立つ優れものである.

定理 4 (平均値定理).

D を Cの領域, f : D → Cは B(c, r) ⊂ D 上で正則な関数とする. このとき

f(c) =

∫ 2π

0

f(c+ reiθ) dθ

が成り立つ.

Proof. 略.

Cauchyの積分公式はこの結果から直ちに従う.

Proof. (その 2)

r > 0を十分小さくとることで, B(z, r)が γ を境界とする有界領域に含まれるようにできる. 平均値定理
より

1

2πi

∫
∂B(z,r)

f(ζ)

ζ − z
dζ =

1

2πi

∫ 2π

0

f(z + reiθ)

(z + reiθ)− z
· (ireiθ) dθ

=
1

2π

∫ 2π

0

f(z + reiθ) dθ

= f(z)
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が成り立つ. f(ζ)/(ζ − z)の正則性a と補題より積分経路を ∂B(z, r)から γ に取り替えてよかったので

1

2πi

∫
∂B(z,r)

f(ζ)

ζ − z
dζ =

1

2πi

∫
γ

f(ζ)

ζ − z
dζ

= f(z)

がわかる.

a これも γ を境界とする有界領域から B(z, r)を引いて閉包を取った集合上での正則性を指す.

定理 5 (最大値原理).

D を C の領域, f : D → C は D 上で正則な関数とする. f(z) が定数関数でないならば, 実数値関数
|f(z)|は D において最大値を取らない.

Proof. (方針のみ) 平均値定理と Cauchy–Riemannの関係式を用いる.

系 6.

D ⊂ Cを有界領域, f ∈ C0(D;C)a はD上正則な関数とする. このとき |f(z)|は ∂Dにおいて最大値
を取る.

a C0(X;Y ) := {f : X → Y | f は X 上の連続関数 }

Proof. f が定数関数のときは明らか. そうでないときも |f(z)|は連続関数なので, 有界閉集合D上のある
点 cで最大値を取るが (コンパクト集合上の連続関数は最大値・最小値を持つ), c ∈ D ならば最大値原理
に矛盾する.

4 準備
Ascoli–Arzelàの定理は, Montelの定理のみならず, Peanoの定理 (ODEの初期値問題の局所解の存在を保
証する) 等の証明にも用いられる. まず一様有界性と同程度連続性を定義するところから始める.
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定義 7 (一様有界性と同程度連続性).

D ⊂ C, fn : D → Cとする. このとき

(i)

{fn}n∈N は D 上一様有界である⇐⇒
def.

∃M ∈ R ∀n ∈ N ∀z ∈ D |fn(z)| ≤ M.

(ii)

{fn}n∈N は D 上同程度連続である
⇐⇒
def.

∀ε > 0 ∃δ > 0 ∀n ∈ N ∀z, w ∈ D (|z − w| < δ → |fn(z)− fn(w)| < ε) .

定理 8 (Ascoli—Arzelàの定理).

D を C 上の有界閉集合, {fn}n∈N を D 上の複素数値連続関数全体 C0(D;C)の点列とする. このとき
{fn}n∈N が一様有界かつ同程度連続ならば, {fn}n∈N は D 上一様収束する部分列を持つ.

Key Point : 可分性, Cantorの対角線論法

Proof. 簡単のため, 有界閉区間 I ⊂ R上の実数値連続関数に対し示す.

I ∩Qの全ての元からなる数列 {xn}n∈N は, I の稠密部分集合である (I の可分性).

{fn}n∈Nは一様有界なので,特に {fn(x1)}n∈Nは有界である.したがってBolzano-Weierstrassの定理よ
り, x1 での値が収束するような {fn}n∈N の部分列 {f1,n}n∈N がとれる. 同様に, ある部分列 {f2,n}n∈N ⊂
{f1,n}n∈N が存在して, {f2,n(x2)}n∈N は収束する. この操作を繰り返せば, {fk,n}n∈N ⊂ {fk−1,n}n∈N で,

{fk,n(xk)}n∈N が収束するような部分列がとれる. このとき対角線上に並ぶ列 {fn,n}n∈N は, 任意の i ∈ N
について {fn,n(xi)}n∈N が収束するような関数列である (対角線論法). 実際, {fn,n}n≥i ⊂ {fi,n}n∈N で
あり, かつ {fi,n(xi)}n∈N は収束する.

f1,1 f1,2 f1,3 · · · s.t. {f1,n(x1)} は収束する

f2,1 f2,2 f2,3 · · · s.t. {f2,n(x2)} は収束する

f3,1 f3,2 f3,3 · · · s.t. {f3,n(x3)}は収束する

...
...

...
. . . {fn,n}n∈N

以下 {fn,n}n∈N が || · ||I(一様ノルム) について Cauchy列であることを示す. ε > 0を任意にとる. この
とき

5



(1) ある δ > 0が存在して

∀n ∈ N ∀x, y ∈ I
(
|x− y| < δ → |fn,n(x)− fn,n(y)| <

ε

3

)
を満たす ({fn,n}n∈N の同程度連続性より).

(2) (1)の δ に対し, あるM ∈ Nが存在して

∀x ∈ I ∃i ∈ {1, 2, · · · ,M} |x− xi| < δ

を満たす (I の有界性 &{xn}n∈N の I における稠密性より).

(3) (2)のM に対し

∀i ∈ {1, 2, · · · ,M} ∃Ni ∈ N ∀m,n ∈ N
(
m,n ≥ Ni → |fm,m(xi)− fn,n(xi)| <

ε

3

)
が成り立つ ({fn,n}n∈N のとり方から, 任意の i ∈ Nに対して {fn,n(xi)}n∈N は絶対値ノルム | · |に
ついて Cauchy列だから). したがって N := max1≤i≤M Ni とすれば

∀i ∈ {1, 2, · · · ,M} ∀m,n ∈ N
(
m,n ≥ N → |fm,m(xi)− fn,n(xi)| <

ε

3

)
が成り立つ.

ここで (1)-(3) の手順から, N はM にのみ依存し, M は δ, δは εにのみ依存することがわかる. すなわち
(3) の N は εにのみ依存する. したがって任意の m,n ≥ N,任意の x ∈ I について, (2) の |x − xi| < δ

を満たす xi をとれば

|fm,m(x)− fn,n(x)| ≤ |fm,m(x)− fm,m(xi)|+ |fm,m(xi)− fn,n(xi)|+ |fn,n(xi)− fn,n(x)|

<
ε

3
+

ε

3
+

ε

3
= ε

が成り立つ. ε > 0は任意だったので

∀ε > 0 ∃N ∈ N ∀m,n ∈ N ∀x ∈ I (m,n ≥ N → |fm,m(x)− fn,n(x)| < ε)

⇐⇒ ∀ε > 0 ∃N ∈ N ∀m,n ∈ N (m,n ≥ N → ||fm,m(x)− fn,n(x)||I < ε)

⇐⇒ {fn,n}n∈N は || · ||I について Cauchy列

がわかる. さて {fn,n}n∈N の一様有界性から

{fn,n}n∈N ⊂ C0
b (I) := {f ∈ C0(I) : ||f ||I < ∞}

であり, (C0
b (I), || · ||I)は Banach空間なので, {fn,n}n∈N は I 上一様収束する.

証明のアイディアは今見た 1次元の場合で尽きているのだが, もう少し仮定を弱めることもできる. 上の主張
の詳細も含め, [5]を参照されたい (1次元の場合はここから引用).
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いよいよ Riemannの写像定理の証明で大活躍するMontelの定理の証明の準備に取り掛かる.

定義 (正規族).

D を Rn の非空な部分集合, F ⊂ C0(D;C)とする. F が正規族 (normal family) であるとは, F 内
の任意の部分列が D で広義一様収束する部分列を持つことをいう.

Montelの定理の証明の後半で必要な手法も先に紹介しておく.

定義 (exhaustion by compact sets).

位相空間X の exhaustion by compact setsa とは, 次の条件を満たすようなX の部分集合Kn の列の
ことである :

(i) ∀i ∈ N Ki は X のコンパクト部分集合
(ii) ∀i ∈ N Ki ⊂ int(Ki+1)

(iii) X =
⋃∞

i=1 Ki

a compact exhaustionともいう. 定着した日本語訳はない.

定理 (Montelの定理).

D を Cの領域, F は D 上定義された正則関数全体の部分集合とすると, 以下は同値である :

(i) F は正規族
(ii) D の任意のコンパクト部分集合K について F は一様有界
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